Cytomegalovirus retinitis and telemedicine

Sakarin Ausayakhun, M.D. and Somsanguan Ausayakhun, M.D., MH.Sc.
Department of Ophthalmology, Faculty of Medicine, Chiang Mai University

Abstract The most common ocular opportunistic infection in AIDS patients is cytomegalovirus (CMV) retinitis, which is characterized by dense retinal whitening and hemorrhage. An experienced ophthalmologist can detect CMV retinitis by looking through a dilated pupil in a highly sensitive and specific manner. This indirect ophthalmoscopy technique does not need expensive equipment, but it does require a high level of expertise and time consumption from ophthalmologists. However, telemedicine can enhance the ability of general practitioners in providing CMV retinitis care, and it is possibly the most reliable method for improving screening of this blinding disease. Telemedicine could be used in the future for screening CMV retinitis, and providing a forum for both monitoring quality control and mentoring trainee non-ophthalmologists. *Chiang Mai Medical Journal* 2012;51(4):131-135.

Keywords: Cytomegalovirus retinitis, blindness, HIV, AIDS, telemedicine

Cytomegalovirus (CMV) retinitis is an inflammatory disorder of the eye, which can lead to permanent and complete blindness if left untreated. CMV is a member of the herpes virus family, and like other viruses in this class, its infection leads to a permanent carrier state. It is a ubiquitous infection, from which an estimated 50-90% of individuals are infected by adulthood [1]. However, it does not cause disease in immunocompetent hosts, who recover from a mild viral illness occurring immediately after infection. In contrast, CMV re-activation may occur in severely immunocompromised patients, such as those with advanced AIDS or immunosuppressant administration after organ transplantation. Not only the eye may be affected in these patients, but also the entire nervous system, and CMV can lead to blindness, paralysis and death [2]. The initial sign of active systemic CMV infection is often CMV retinitis, which can be observed as characteristic changes in the appearance of the retina [2-4]. If patients with active CMV can be identified in a systematic and efficient manner, initiation of anti-viral treatment can reduce rates of blindness, neurological deficits, and mortality significantly.

Characteristics of CMV Retinitis

CMV retinitis is typified by whitening and hemorrhage of the retina, which spread centrifugally in a “brush-fire” pattern [3] (Figure 1). If untreated, CMV retinitis slowly advances, and blindness results from optic nerve or macula...
involvement, or retinal detachment [5-6] (Figure 2). Most Southeast Asian and African patients with CMV retinitis are treated with intravitreal ganciclovir injections until antiretroviral therapy results in immune reconstitution [7-11].

The emerging epidemic of CMV retinitis

UNAIDS estimates that 34.2 million people are infected with HIV worldwide, with Sub-Saharan Africa and Southeast Asia sharing the highest burden, of which Thailand has 1.3% prevalence [12]. Many HIV patients in these countries are at risk of CMV retinitis. These authors recently reported 33% prevalence of CMV retinitis in newly diagnosed HIV patients in northern Thailand [13]. In addition, CMV retinitis was the second most common cause of blindness seen at Chiang Mai University Hospital, accounting for 19% of all bilateral blindness cases [14]. However, CMV retinitis often goes undiagnosed and untreated, due to an inadequate number of ophthalmologists. Routine screening of AIDS patients for CMV retinitis simply does not occur. Most patients are referred to ophthalmologists only after experiencing marked visual symptoms, at which point irreversible retinal damage has occurred already.

Diagnosis of CMV retinitis

By using a binocular indirect ophthalmoscope and condensing lens to look through a dilated pupil, an experienced ophthalmologist can detect CMV retinitis in a highly sensitive and specific manner. This indirect ophthalmoscopy technique does not need expensive equipment, but it does require a high level of expertise and time consumption from ophthalmologists. As the number of at-risk patients is large; and consistently increasing in regions affected by the current HIV/AIDS pandemic, a novel solution utilizing non-ophthalmologists must be developed, in order to increase the CMV retinitis screening capabilities of local health care teams.

Strategies for improving access to screening for CMV retinitis

Two potential methods that would involve non-ophthalmologists in diagnosing CMV retinitis include (1) the use of indirect ophthalmoscopy in training non-ophthalmologists to diagnose CMV retinitis, and (2) train non-ophthalmologists to obtain retinal images that can be evaluated by teledmedicine. Retinal photography, while currently expensive, is not technically challenging, and is likely to be more reliable than a non-ophthalmologist’s clinical exam.
Telemedicine in developing countries

Telemedicine uses communication networks for delivering health care services [15]. It has been used also for diabetic retinopathy, and retinopathy of prematurity screening [16-20], in which non-specialists capture retinal images and transmit them to a reading center for diagnosis, thus prompting referral for a clinically significant disease. The use of this model, and results from some previous studies have shown that infection usually involves zone 1 or 2 [3, 21]. CMV retinitis would be an ideal candidate for telemedicine; as its retinal changes are photographed easily with a photographic grading system that is established already [22], and early treatment is effective.

Telemedicine for CMV retinitis

Telemedicine could provide an effective screening mechanism in many developing countries that have a high burden of HIV/AIDS and an insufficient number of ophthalmologists. Early diagnosis and treatment can prevent blindness, which is especially important in this era of enhanced access to highly active antiretroviral therapy (HAART), and enable longer survival rates in persons with AIDS. A telemedicine-screening programme for CMV retinitis was validated in Singapore, using indirect ophthalmoscopy as the gold standard. In this study, the dilated retinal photography with 9 fields of 50 degrees was 100% sensitive and 99.8% specific [23].

Telemedicine and CMV retinitis at Chiang Mai University Hospital

A digital retinal camera was used in a cross-sectional study at Chiang Mai University Hospital to determine the utility of remote assessment of retinal photographs (i.e., telemedicine) as a screening test for CMV retinitis. Ninety-four consecutive patients were screened in this study with the Topcon TRC-NW 6S, taking 9 overlapping 45-degree fundus photographs that were converted automatically into an 85-degree mosaic image (Figure 3). Three remote graders assessed each mosaic image for the presence of CMV retinitis. All patients also were examined by an attending gold standard ophthalmologist for the presence of CMV retinitis. Telemedicine was found to be a promising screening strategy for CMV retinitis, with sensitivity ranging from 89 to 91% and specificity from 85 to 88% [21].

In an ancillary study, 3 auto-mosaic programs were used to create mosaic images of the retinal photographs taken during the study. The i2k Retina software package was found to be superior to 2 other products in terms of minimizing mosaic stitching errors [24]. In northern Thailand, patients with CMV retinitis presented with advanced disease. The clinical features of 52 patients were assessed, with newly diagnosed CMV retinitis as part of the telemedicine study, and a high proportion of patients was found with bilateral CMV retinitis (46%), as well as unilateral and bilateral blindness (27% and 8%, respectively). Eyes with CMV retinitis frequently had retinitis affecting the fovea (22%) or optic nerve (23%), and retinitis lesions were generally large, with 58% of the eyes having lesions greater than 25% of the retinal surface area [25]. It was hypothesized that the advanced nature of CMV retinitis most likely came from delayed diagnosis. However, this study had several limitations, of which one was it being conducted at a tertiary medical center that may limit generalization of
the results. Other limitations were failure of the imaging system to capture images of the peripheral retina, specifically zone 3 and outer zone 2, and poor image quality from inadequate papillary dilatation and opacity of the ocular media.

Conclusion and Future Directions

To address the lack of human resources, there should be a shift of paradigm for eye examination from only the area of the ophthalmologist. All medical personnel could be trained to use fundus cameras for detecting cases that require an ophthalmologist review. Recently, an ultra-wide fundus photography system was used to image CMV retinitis [26], and it captured greater areas of total retina and peripheral lesions. This camera is more expensive than a standard fundus camera, and may be not affordable in many developing countries.

However, there are less expensive cameras being developed [27], and enhanced broadband capabilities are becoming available over cell phone lines. In the near future, CMV retinitis screening by telemedicine will be an option even in remote areas without high speed internet. High quality, low cost, portable digital imaging equipment should be developed in resource-limited settings.

References

